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Abstract

Reducing energy consumption of climate control systems is
important in order to reduce human environmental footprint.
The need to save energy becomes even greater when consid-
ering an electric car, since heavy use of the climate control
system may exhaust the battery. In this paper we consider a
method for an automated agent to provide advice to drivers
which will motivate them to reduce the energy consumption
of their climate control unit.
Our approach takes into account both the energy consump-
tion of the climate control system and the expected comfort
level of the driver. We therefore build two models, one for as-
sessing the energy consumption of the climate control system
as a function of the system’s settings, and the other, models
human comfort level as a function of the climate control sys-
tem’s settings. Using these models, the agent provides advice
to the driver considering how to set the climate control sys-
tem. The agent advises settings which try to preserve a high
level of comfort while consuming as little energy as possible.
We empirically show that drivers equipped with our agent
which provides them with advice significantly save energy
as compared to drivers not equipped with our agent.

Introduction
There is a growing interest in electrical cars. Since 2012
there has been an increase of 170% in electrical cars world-
wide (as of July 2014) (Trigg and Telleen 2013; Pontes
2014). Yet, one of the most reported reasons for refraining
exchanging to electrical cars is the relatively limited travel
range it has (w.r.t petrol cars). Extending the travel range is
of course desirable, it’s economically beneficial and environ-
mentally friendly - totally gas-free and tailpipe-emissions-
free.

Auto experts from Edmunds.com and the Society of Au-
tomotive Engineers (SAE) have reported that the air condi-
tioner reduces the cars fuel efficiency by up to 10 percent
(Reed and Romans 2009; Hill et al. 2004). Thus, we pro-
pose an automated agent that advises the driver on how to
set the car’s climate control system, in a way that would re-
duce energy consumption while keeping the driver comfort-
able. We conducted this research in the summer time using
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Figure 1: Chevrolet GM Volt car interior.

a Chevrolet GM Volt car. During that time temperatures var-
ied between 30-36◦C.

Unfortunately, the agent and human user do not share the
exact same goal. While the agent may care mostly about
the car’s energy consumption, the driver, on the other hand,
is usually more interested in his own comfort level while
less interested in the car’s energy consumption. Thus, the
agent faces the challenge of providing advice that will re-
duce energy consumption while taking into consideration
the driver’s comfort level, i.e., advice that will persuade the
driver to set the system settings such that he reduces the en-
ergy consumption of the system.

The agent has to overcome two sources of uncertainty.
First, it should try to model the preferences of the driver,
estimating his comfort level in a given climate control set-
ting. Second, it should estimate the energy consumption
of a given setting. Both the drivers’ preferences and the
car’s energy consumption are very noisy and difficult to es-
timate. Both models were built using data collected by run-
ning experiments in the Chevrolet Volt. Based on the con-
structed models we formalized the optimization problem of
the agent, which wishes to minimize the energy consump-
tion while maintaining a reasonable level of estimated com-
fort. We also designed a GUI that allows the agent to provide
the advice in a convenient and attractive way for the driver.



We have conducted an extensive three different advice provi-
sion methods, with 49 human users who were required to set
the climate control parameters of the Chevrolet Volt when it
was very hot outside.

The proposed agent can be deployed in petrol and elec-
trical cars, and as the results will show, has great long-term
and short-term benefits in Chevrolet GM Volt car.

Related Work
Agents for the improvement of energy efficiency are a chal-
lenge for researchers and practitioners alike. Many works on
the subject have been put forward, an example is Koehler et
al. (2013), where the authors present automated approaches
that can better match heating control to users routines and
preferences. Al Mahmud et al. (2007) investigate the de-
sign and evaluation of the iParrot, an intelligent agent that
helps to persuade family members to conserve energy in
their home. Froehlich et al. (2009) suggest a mobile applica-
tion that senses and reveals information about transportation
behavior, in an attempt to persuade people to increase their
use of green transportation.

Attempts to persuade people to change their behavior ”for
the better” is not restricted to energy saving. An example of
such work is Consolvo et al. (2008), which by activity mod-
eling peoples activities throughout everyday life they try to
encourage physical activity. In his book (Fogg 2002), Fogg
surveys many technologies trying to persuade humans, and
analyzes the main properties required for such persuasion
technologies to be successful. One example (pg. 50) is an
exercise bicycle connected to a TV (“Telecycle”). In this
system, as you pedal at a higher rate the image on the TV be-
comes clearer. This way the Telecycle encourages humans
to exercise at higher rates. However, in most of the works,
not only is the goal clear (exercise more or consume less en-
ergy), but so is the suggested way to achieve it. Therefore,
the system is not required to provide advice as to how to
achieve this goal, but merely persuade the user into doing
so.

When considering advice providing systems (recommen-
dation systems), they have been focused on predicting rating
behavior by users in order to best provide them with recom-
mendations. (See Ricci et al. (2011) for a review). Most
works in this realm have only considered the utility of the
users and minimize prediction error with respect to users’
choices. Other works do explicitly consider the utility of the
system (Chen et al. 2008; Azaria et al. 2013). These works
build a user model, which allows the prediction of the prob-
ability that a user will accept a recommendation (or a set
of recommendations). Using this prediction, they solve the
optimization problem for the system in order to maximize
its expected outcome. In all of these works, the user may
either accept or reject the advice. Similarly, Azaria et al.
(2012) model the long-term effect of advice given by a self-
interested system on the users in route selection problems.
Sarne et al. have shown that users’ performance can be sub-
stantially improved through manipulating the input (e.g., the
information concerning the different choices) that they re-
ceive (Sarne et al. 2011). Elmalech et al. suggest an ap-
proach according to which the decision regarding the advice

to be provided should not be made merely based on the en-
capsulated utility, but rather also based on the likelihood of
its acceptance by the user (Elmalech et al. 2015). Das et al.
(2009) theoretically analyze a recommender system trying
to maximize its own expected utility. They assume the exis-
tence of some threshold in which, if the recommendations’
quality is within the assumed threshold, the acceptance rate
for the users remains the same. They analyze the benefit
that the system may gain from providing recommendations,
which are sub-optimal to the user but are close enough in
quality and within the assumed threshold. Inspired by their
work, we also set a threshold and assume that if the advice
is above this threshold, the users are not likely to ignore it,
but will be influenced by the advice received.

In our work, however, the challenge is doubled; the agent
has to figure out it’s own utility from every action as well as
the human drivers’ utility. We need to combine both these
utility function into an advice provision model in which the
human driver could be persuaded to save energy. To the best
of our knowledge, no persuasive work thus far has focused
on automobile climate control systems.

The Volt Climate Control System
The study in this paper was based on the Volt’s climate con-
trol system. In this system the drivers can control the settings
S as described in this tuple (T, F,D,M) where:

• Temperature (T ) is associated with a temperature in Cel-
sius and can receive values between 16 and 35 degrees;

• Fan strength (F ) is associated with the fan blower and
can receive values between 1 and 6;

• Air delivery (D) may either be set to face (in which D is
set to 0) or face and feet (in which D is set to 1);

• and Mode (M ) may either be set to “eco” (when M is
set to 0) or to “comfort” (when M is set to 1). According
to the Volt’s user manual, the ’eco’ mode tries to reduce
energy consumption, while the “comfort” mode aims at
maximizing the user’s comfort level.

Given a setting s we use subscript sT to refer to the temper-
ature in that setting, sF to refer to the fan strength, sD for
the air delivery and sM for the mode of the setting.

Figure 2 presents the original climate control system
panel (from the user manual). Figure 3 provides a short de-
scription for each of the variables (from the user manual).

CARE
In this section we present our Climate control Adviser for
Reducing Energy consumption (CARE). CARE requires the
composition of two models, one for modeling the climate
control’s energy consumption as a function of its settings
and the other for modeling human comfort level as a func-
tion of the climate control’s settings. CARE uses these mod-
els in order to provide a driver with advice regarding the set-
tings of the climate control system, taking into account both
the expected energy consumption and the expected comfort
level. The comfort level is captured by a number between 1
to 10 where:



Figure 2: Original Volt climate control panel, taken from the
user manual.

Figure 3: Description of the Volt’s climate control variables.

• 1: ”I’m very uncomfortable; I would not be willing to
drive under these conditions.”;

• 3: ”I’m uncomfortable, but I might be willing to compro-
mise.”;

• 5: ”Reasonable, I would be willing to drive under these
conditions.”;

• 7: ”I’m comfortable; I would like to drive under these
conditions.”; and

• 10: ”I’m most comfortable, I would be happy to drive
under these conditions.”

CARE Training Data
Constructing CARE requires two sets of training data: ψe

and ψc. ψe is used to train the parameters for the en-
ergy consumption model. (see Section ). It is composed
of a tuple with the following format for every instance i:
ψi
e = (e, T, F,D,M,E, I) where e is the energy consump-

tion level, given the other parameters; T, F,D andM are the
variables set on the climate control system; E is the exter-
nal temperature as displayed in the dashboard; and I is the
internal temperature as measured with a manual thermome-
ter located between the 2 front seats. Both the external and
internal temperatures could be viewed by the drivers.
ψc is used to train the parameters for the comfort model.

(see Section ). It is composed of a tuple with the follow-
ing format for every instance i: ψi

c = (c, T, F,D,C,E, I)
where c is the comfort level reported by the subject, given
the other parameters; C is the initial comfort level, i.e. the
comfort level reported when the driver enters the car; and all

other parameters are as described in ψe
1.

Energy Consumption Model
We model the energy consumption of the climate control
system based on the following equation:

e(T, F,D,M,E, I) = (w1 · (−T ) + w2 · F + w3 ·D+

w4 · E + w5 · I) · ((1 + w6) ·M) (1)

where w1, w2, ..., w6 are parameters learned by the model.
This form of function assumes that all variables except the
climate mode have a linear impact on the final energy con-
sumption. The climate mode is assumed to have a multi-
plicative impact on the total energy consumption, since in
the “comfort” climate mode, all of the climate control com-
ponents seem to work harder and thus consume more en-
ergy. This form of function was compared to other forms
and yielded the best fit to the data collected2. All parameters
are assumed to be positive, except w3 which models the im-
pact of air delivery on energy consumption. w3 was allowed
to obtain negative values and in fact it did end up with a neg-
ative value. We use the training data, ψe, and search for the
parameters w1, w2, ..., w6 which maximize the likelihood of
the training data (maximum likelihood estimation). We use
interior point methods (Nesterov, Nemirovskii, and Ye 1994)
to search these parameters.

Human Comfort Level Model
CARE’s model for the human comfort level is based on the
following equation:

c(T, F,D,C,E, I) = v0 − v1 · T + v2 · F − v3 · F 2−
v4 ·D + v5 · C − v6 · E − v7 · I (2)

where v0, v1, ..., v7 are parameters learned by the model. F 2

tries to capture the effect of the noise created by the fan,
which is super-linear in the fan’s level. The human com-
fort level model assumes that the human comfort level is a
linear combination of all of the parameters that the human
faces (assuming that F 2 models the noise effect). This as-
sumption is common in the literature (Nguyen et al. 2013;
Azaria et al. 2011). According to the car’s user manual,
the ’eco’ mode is supposed to save energy, therefore, CARE
never recommended to set the mode to ”comfort”, and we
only gathered data on subjects’ comfort level when using the
’eco’ mode. For that reason, the human model does not take
the mode into account, and only tries to predict the comfort
level for when the mode is set to “eco”. We use the training
data, ψc, and search for the parameters v0, v1, ..., v7 which
maximize the likelihood of the training data (maximum like-
lihood estimation). We use again the interior point method
to search these parameters similar to the search performed
in Section for finding the suitable parameters for the energy

1Notice that the mode, M , does not appear in the comfort level
model; this attribute will be explained later.

2Some of the other functions that were tested included one or
more of the following modifications to the above function: the use
of M as an additive variable; F as having a multiplicative impact
or T as having an impact depending on its offset from I or E.



consumption model. Note that the initial comfort level (C)
may change from person to person. This will cause the ex-
pected comfort level to vary among people, and thus also the
advice provided by CARE may vary among different peo-
ple. This causes the advice to be personalized, i.e. different
drivers may receive different advice. However, it is possible
that people reporting the same comfort level in a given set-
ting will have slightly different preferences that can be used
for further energy saving. Furthermore, it will be preferred
if the driver’s preferences will be learned without her need to
explicitly report her comfort level. These two improvements
(among others) can be done only when the system interact
repeatedly with the user. See section Current Work for our
work on the subject.

CARE Method for Advice Provision
Given both the energy consumption model and the human
comfort level model, CARE provides the driver with advice
regarding the settings of the climate control system. Given
the external temperature (E), the internal temperature (I)
and the initial comfort level (C), CARE provides the driver
with advice, a(E, I, C) ∈ S, that yields an expected com-
fort level of at least 7 while minimizing the expected energy
consumption of the climate control system. CARE only con-
siders advice in which the mode is set to “eco” (i.e. M is
set to 0). Comfort level 7 was chosen as the minimal target
comfort level since a comfort level of 7 means that the driver
is comfortable. More formally, CARE provides advice such
that:

a(E, I, C) = argmin
s∈S

e(sT , sF , sD,M,E, I) s.t.

sM = 0; c(sT , sF , sD, C,E, I) ≥ 7
(3)

where e(·) is obtained from Equation 1, and c(·) is obtained
from Equation 2. Since the search space is small (|S| is
much smaller than 1000), we perform an exhaustive search
to find the optimal advice. However, in a climate control sys-
tem with additional variables, CARE may consider a more
efficient method of search.

Algorithm 1 presents an overview for the entire procedure
of the construction and usage of CARE.

Data Collection
In order to train the Energy Consumption and Human Com-
fort Level models we used a Chevrolet GM Volt car parked
(idle) in a closed parking lot at General Motors Advanced
Technical Center in Herzliya, Israel (GM ATCI). The park-
ing lot was chosen due to its stable temperature, and the fact
that it is shaded at all times. These conditions were repeated
in the actual experiment described in the Experimental Eval-
uation section.

Data Collection for Modeling Energy Consumption
The energy consumption of setting s is the sum of two fac-
tors: Energy consumed by the blower (the fan) and the en-
ergy consumed by the compressor. The data was collected
directly from the car’s feedback using 120 measurements,
each measurement was a 10-minute episode in which the

Find w1, w2, ..., w6 for Equation 1 which maximize the
likelihood of the training set ψe.
Find v1, v2, ..., v7 for Equation 2 which maximize the
likelihood of the training set ψc.
Obtain initial comfort level (C) from driver.
Obtain external (E) and internal (I) temperatures.
min←∞
for each s ∈ S where sM = 0 do

if e(sT , sF , sD, sM , E, I) < min and
c(sT , sF , sD, C,E, I) ≥ 7 then
advice← s
min← e(sT , sF , sL,M,E, I)

end if
end for
return advice
Algorithm 1: Construction and use of CARE.

climate control system was on (resulting in a total of 20
hours). We were interested in the total energy consump-
tion in each of these 10-minute episodes (and not momen-
tary energy consumption which varied a lot). To maintain
the integrity of the measurements, we’ve let the car warm
up (and the compressor cool down) for 10 minutes between
consecutive measurements. The measurements were for var-
ious temperatures, starting at T = 16 and up to T = 26, and
various fan speeds, starting at F = 1 up to F = 5. The
measurements were used to train ψe.

It was encouraging to observe that there are settings where
a large percentage of energy can be saved. For example,
when the temperature in the car and outside the car is 26◦C,
then the energy consumption when setting the climate con-
trol system temperature to 16◦C, the fan to 5 and the mode
to “comfort” is 75% higher than when setting the tempera-
ture to 22◦C, the fan to 1 and the mode to ”‘eco”. Of course,
this is an extreme case.

According to our measurements, when all other settings
are identical, ’eco’ indeed consumes less energy than ”com-
fort”.

The final function obtained was: e(T, F,D,M,E, I) =
(−0.0095T + 0.016F − 0.003D + 0.005E + 0.005I) ·
(1.17M).

Data Collection for Modeling Human Users
Collecting data to train the human model (ψc) is far more
difficult than the data collection for the energy consumption
model. We had to find subjects which were willing to enter
the parked car (several times) in a hot day, and experience
CCS levels which were not necessarily those that were the
most convenient for them. As we will describe here-under,
the subjects were also required to wait outside the car be-
tween measurements, so the car could warm-upwhile the car
warmed up between.

We want to get as many instances as possible, due to
the high cost of recruiting subjects. These instances should
preferably be in the range of plausible settings. We recruited
15 subjects for training the Human Model, out of which 4
subjects were females and 11 were males. The subjects’



ages ranged from 21 to 73, with a mean of 30 and a me-
dian of 27. All subjects live in Israel. The subjects were
first asked to fill out a questionnaire collecting demographic
information. Then the comfort level scale was explained to
them (See the CARE Training Data section).

The subjects were asked to enter the car and sit in the
driver’s seat with their hands on the steering wheel. While
the climate control system was still off, the subjects were
asked to set the vents to point in their direction. At this point,
the subjects were asked to rate their comfort level. Then the
subjects were told how to operate the climate control and
were asked to set it so that they would feel most comfort-
able. The selected settings were left on for 4 minutes. The
subjects were then asked for their comfort level and were
required to explain why they had chosen that level. The sub-
jects were then asked to exit the car and the car was left to
warm up for an additional 4 minutes.

In order to test as many settings as possible, the subjects
then returned to the car and the experiment operator set ad-
ditional 8 settings for them, each was left on for 4 minutes
followed by the subjects rating their comfort level. Between
one setting to the next the subject was asked to stay outside
the car for 4 minutes while the car warms up. and waited
4 minutes. This process resulted in 120 instances – 15 sub-
jects, each provided 8 instances.

The subjects’ comfort levels seem to have been mostly
influenced by the temperature that was set on the climate
control system, T . The fan, F , also had an impact on the
comfort level, though not as strong as the temperature. Re-
call, that the opposite phenomena occurred when modeling
the energy consumption level. This result motivated CARE
to advise settings with the fan set to low values. Most sub-
jects reported a reduced comfort level when the fan was
too strong, some reported that the noise was what bothered
them. The other parameters seemed to have a milder im-
pact on the subject’s comfort level. The final formula for the
Human Comfort Level model is:

c(T, F,D,C,E, I) = 16.608− 1.2995T+

0.9841F − 0.0642F 2−
1.2188D + 0.3238C − 0.1727E − 0.4817I

Experimental Evaluation
To see if CARE can reduces energy consumption we imple-
mented a panel based on the original climate control panel in
the VOLT car (Figure 2), with additional add-ons and func-
tionality. We tested CARE against two agents; a ”Silent”
agent – which does not offer any advice yet records the
subjects choices and energy consumption, and CAREless,
which only provides information on the energy consumption
the current setting produces.

• Silent: As shown in Figure 4, the GUI of this agent is
based to the original climate control panel in the VOLT
car. The silent agent merely presents the current climate
control settings and records the drivers actions (changes
in AC settings) and energy consumption (as seen from the
car’s data). The driver neither receives any information
nor any advice.

Figure 4: A screen-shot of the GUI when no advice is pro-
vided.

Figure 5: A screen-shot of the GUI with additional energy
consumption information provided by CAREless (the circle
in the bottom left corner).

• Careless: As shown in Figure 5, on top of the silent
agent functionality, CAREless has an additional informa-
tion circle, presented in the bottom left, which supplies
the driver with an estimation of the current energy con-
sumption level. This information appears as the percent
of the current energy consumption from the maximum en-
ergy consumption obtained in the training data (the lower
the better). Note that CAREless does not provide any ac-
tive advice. In Figure 5 we can see an example where the
current consumption is 40% of the maximum.

• CARE: On top of CAREless functionality, CARE pro-
vides advice. As soon as the driver gets into the car s/he
is presented with an advice indicated in purple (See Fig-
ure 7). The driver can set the climate control in any set-
tings he/she desires, which is not necessarily the advice
provided by CARE. Nevertheless, s/he is presented with
an estimate of the current energy consumption (exactly as
provided by CAREless) as well as the advice with its pro-
jected energy consumption indicated in purple in Figure
6. These add-ons are not present in CAREless, as there
is no advice. Figure 8 shows a screen-shot of a case in
which the driver set the climate control system to match



Figure 6: A screen-shot of the GUI when the driver set the
climate control system differently from CARE’s advice. In
this example the driver decided to set the temperature to
18◦C (rather than 21◦C as advised by CARE), the fan to 4
(rather than 1), the air delivery to both face and feet (rather
than only to the face) and the mode to ’comfort’ (rather than
’eco’). This resulted in an energy consumption level of 63%
of the maximal energy consumption level, rather than only
25% if the driver would have followed CARE’s advice.

the advice.

Methodology
People have different preferences when it comes to cli-
mate control; they vary in their preferred temperature, fan
strength, etc. Some of these differences are physiologi-
cal, larger people tend to gain and lose heat more slowly
than smaller ones, by virtue of their smaller surface-area-to-
volume ratios. Also, it has been shown in Wunderlich’s stud-
ies in the early 19th century that women tend to have lower
core temperatures than men (Wunderlich 1870)3, regardless
of differences of height and weight. These mentioned differ-
ences, as well as others that were studied such as occupation,
place of birth and others, impose a big concern when testing
agents between-subjects. Not only that, external factors in
our experimental environment tend to change, i.e., the ex-
ternal temperature (E). Although the study was conducted
in the summer time temperatures were not constant, varying
from 30 to 36◦C. Therefore, in order to control this variance,
we chose an experimental design that examined the effect of
advice as a within-subject variable rather than a between-
subject variable, thus overcoming the mentioned challenges.

First, we recruited 49 Israeli subjects, 33 males and 16
females, aging from 21 to 73 (mean 35, median 31)4. Each
subject was asked to fill out forms and demographic data.
Then, the subject was led to a Chevrolet GM Volt car parked
in GM ATCI. We had each subject run the experiment twice,
once with the silent agent (as a baseline) and once with either
CARE or CAREless. We counterbalanced the order among
the type of experiments, i.e. approximately half of the sub-

3Available online as Google eBook
4All experiments with human subjects were approved by the

corresponding IRB.

Figure 7: A screen-shot of the GUI with advice from CARE.
Note that the advice is shown in purple. The left purple cir-
cle represents the expected energy consumption from fol-
lowing the advice. The right circle represents the current
energy consumption is empty, since the driver did not yet
turn on the climate control system.

Figure 8: A screen-shot of the GUI when the driver set the
climate control system to match CARE’s advice. The right
green circle represents the current user energy consumption
and the left purple circle represents the advice’s expected
energy consumption.



Figure 9: The mean energy consumption level of the sub-
jects who were assigned to CARE and CAREless agents,
compared to the mean energy consumption levels of the sub-
jects when they did not receive any advice.

jects first ran the experiment with no advice. 24 subjects
were assigned to receive advice from CARE, while 25 sub-
jects were assigned to receive the information provided by
CAREless (randomly).

At each phase, the experiment operator asked the subject’s
initial comfort level (denoted C in our model). Then the
subject was given 10 minutes to be in the Volt car (parked in
ATCI) and he or she was free to tell the experimenter what
settings to set in the climate control system. The GUI of
the designated agent was displayed on a laptop, while the
built-in car display was covered to avoid distractions. The
experimenter updated the climate control of the car as many
times as requested by the driver. While in the car, the subject
was given a smart phone with a driving simulator ”Bus Sim-
ulator 3D” 5 to be played while the experiment goes on. The
motivation was to set the conditions similar to regular driv-
ing and give the subjects something to do. After 10 minutes,
the subject had to go outside the car and wait until inside
of the car gets warm again to simulate initial conditions. To
that aim, we left the doors and the trunk open for 10 min-
utes while the car was turned off. Then the second stage was
examined for another 10 minutes, in the exact same fashion.

The process took about 40 minutes per subject (includ-
ing the paperwork and instructions), for which we paid each
subject 100 NIS (approximately 27$). In real terms, 100 NIS
is the price of a fancy lunch in Israel.

Results
The results were analyzed using repeated measures of
ANOVA with total energy consumption as a dependent vari-
able, silent (True/False) as a within-subject variable, type
of agent (CARE/CAREless), gender of the subject and or-
der of presentation (baseline, first or second) as between-
subject variables. Thus, the statistical model had one within-
subject factor and three between-subject factors. The sta-
tistical analysis revealed no significant findings, except a
trend suggesting that the effect of the agent depended on the

5Available free in Google Play store.

type (either CARE or CAREless). We therefore ran separate
analyses for each of the two advice types.

When subjects were given advice by the CARE algo-
rithm, their total energy consumption significantly decreased
from 0.24 KWH to 0.20 KWH, an improvement of 17%
(F (1, 21) = 7.6, p < 0.05). We also corrected for mul-
tiple comparisons, and after the Bonferroni correction, the
type-I error remains < 0.05. This improvement amounted
to a mean energy savings described in the 95% confidence
interval: [−24%,−5%]. The effect of presentation order
and its interaction with the effect of advice were both not
significant. A similar analysis for the CAREless advice
did not show any improvement in total energy consump-
tion (F (1, 23) = 0.12). Figure 9 presents the mean en-
ergy consumption level of the climate control system, which
was obtained by the subjects who were assigned to CARE or
CAREless, compared to the mean energy consumption level
of the same subjects when they did not receive any advice at
all.

Figure 10 shows the energy consumption level of the cli-
mate control system of each subject when receiving advice
from CARE compared to the baseline of that same subject
when not receiving any advice. As illustrated by the figure,
19 out of the 24 subjects have shown an improvement over
their baseline when receiving advice from CARE (their asso-
ciated points appear under the 45◦ diagonal). The figure also
shows that for three subjects, CARE reduced energy con-
sumption by approximately 50% (from approximately 0.25
KWH to approximately 0.12 KWH).

When comparing men to women in no advice condition,
it turns out that females tend to consume less energy than
males, 0.201KWH vs 0.242KWH, which fits the common
myth that women like the air conditioner weaker than men.

In order to ensure that the advice provided to the user
is easy to understand, we asked the subjects the following
question: ”Was the information on the screen clear?” and
asked them to specify a number between 1 and 10. The av-
erage answer was 9.15, indicating that the GUI is very un-
derstandable.

Discussion
As shown by the results, CARE significantly decreases the
energy consumption of its users while CAREless did not do
as well (w.r.t no advice condition). The conclusive statisti-
cal finding at 95% confidence that Care was better than the
baseline is based on a within subject experiment and model.
Astute readers might notice that the baseline values for the
Care and careless conditions were not the same and might
ask themselves if this difference might have affected the re-
sults. The beauty of within subject analyses is that even
when baseline values are different, the comparisons of con-
ditions are done per each individual and therefore are robust
to variations among subjects. In our case, we found a sta-
tistical difference between Care and the baseline and did not
find such differences for the other condition. This statistical
analysis also captures any other effects which might have
been in play, such as the psychological effect which the dis-
played internal and external temperatures may have had on
the subjects.



Figure 10: The energy consumption level of the climate
control system of each subject when receiving advice from
CARE compared to the baseline of that same subject when
not receiving any advice.

We notice that the advice provided by CARE is not in a
”take it or leave it” fashion, rather than it is a reference point,
an anchor if you will, for the users to select their settings by.
For example, one of the subjects, when receiving no advice,
set the climate control system to a temperature of 23◦C and
the fan to 4. However, when that same subject received the
advice from CARE to set the temperature to 24◦C and the
fan to 1, she set the temperature to 24◦C as suggested, but
set the fan to 2. Later, when she became a little too warm,
she set the fan to 3, and the temperature setting at 24◦C. The
effect seen here can in part be attributed to the anchoring ef-
fect. This effect proposes that when people do not know
the exact value of a product (or answer to a question), if
they are first shown a possible value (or answer) which was
randomly generated, then later, when they need to evaluate
the product (or give their own answer to the question), their
evaluation (or answer) is relatively close to the original eval-
uation (or answer) (Ariely, Loewenstein, and Prelec 2006;
Johnson and Schkade 1989). Obviously, though, a system
may not rely solely on the anchoring effect, since a system
will lose all its credibility by offering an unreasonable value
(such as setting the temperature to 30◦C).

Notice, that our study has focused on summer condi-
tions, and can be easily expanded to winter conditions as
well. Providing advice which depends on the actual weather
seems essential for people to treat the advice seriously. Also,
the CARE methodology can be implemented on both elec-
trical and petrol cars alike, yet measurements in each car are
needed to estimate the models correctly.

Clearly, CARE has reduced her energy consumption,
which in fact translate naturally to longer travel distance and
lower electricity cost. This also suggests a lower fuel con-
sumption levels for a petrol car implementation.

The methodology presented in this paper can be extended

to include other automotive systems such as the navigation
or adaptive cruise control (ACC) systems. These systems
share a common characteristic with the climate control sys-
tem studied in this work—the system and human user do
not share the exact same goal. For example, while the ACC
system may care mostly about the car’s energy consump-
tion and driver’s safety, the driver, on the other hand, is usu-
ally more interested in reducing travel time. Thus, the agent
faces the challenge of providing advice that will be bene-
ficiary for the system while accounting for what the driver
considers acceptable. Rosenfeld et al. (Rosenfeld et al.
2012) have showed that learning drivers’ behavior can im-
prove the use of the ACC system. Thus, combining their
model with a model quantifying the system’s goals can bring
about an even better use of the ACC system.

Current Work
We have recently finished testing agents that interact repeat-
edly with their users to save energy in a platform similar
to the one used for the one-time advice provision. Among
the challenges we faced when extending the work to the re-
peated interactions case, is the notion of building trust be-
tween the agent and the driver, personalizing the advice even
when the comfort level is not provided, taking into account
long term effect of an advice and a new graphical user in-
terface. Experiments run so far show that these agents were
able to compute personalized advice even when the users
were not asked for their initial comfort level and were adap-
tive to their drivers’ actions. For example, when a driver
rejected an advice, the agent would adapt its computations
so that whenever it provided a new advice, it would be bet-
ter suited for that driver. And furthermore, when a driver
accepted an advice, the agent tries to improve the energy
saving of the car by providing a new advice in the next inter-
action given the past behavior of the driver. The results from
testing our repeated-interaction agent suggest that although
tested in a hotter environment than CARE ( external temper-
atures were 35− 37 ◦C), the average energy consumption at
each 10 minute episode is 33% lower than the ”no advice”
case tested. Moreover, the new agent outperformed CARE
on average 0.17KWH vs. 0.2KWH. See Rosenfeld et al.
(2015) for a report about these new models and results.

Conclusions
In this article, we presented a method to persuade a driver to
reduce the energy consumption of the climate control sys-
tem of his electrical car. Via experiments, we showed that
the proposed methodology leads to a significant reduction
of energy consumption. The methodology requires the col-
lection of data on the energy consumption of the climate
control system and on the drivers’ behavior, but is effective
even with a small number of examples (15 drivers in our
experiment). We designed a GUI for presenting the advice
that facilitates understanding of the advice. The reported
work is the first step in the process of the deployment of
a persuasive agent in electrical and petrol-fueled cars alike.
As discussed above, the results and insights obtained in this
study were used once again to accomplish an additional step



towards real deployment. We hope that this work will in-
spire researchers and practitioners to translate the proposed
methodology into persuasive and advice-providing agents in
other fields.
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